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Abstract. We consider the su(p) spin chains with long-range interactions and the spim
generalization of the Calogero—Suthesland models, We show that their properties derive from a
transfer matrix obeving the Yang-Baxter equation. We obiain the expression of the conserved
quantities of the dynamical models and we diagonalise them. In the spin chain case, we establish
the conrection between the degeneracies of the spectrum and the representation theory of the
Yangians. We use a comespondence with the dynamical models to diagonatise the Hamiltonian.
Finally, we extend the previous results to the case of a trigonometric K-matrix.

1. Introduction

The most remarkable properties of the XXX chain with long-range interactions [1,2] are
that its spectrum is additive and that the states are created by filling a ‘Dirac sea’ with
particles obeying a ‘generalized Pauli principle’ [3]. Recently, it has become apparent [4]
that the algebras underlying the symmetries of these models are the Yangians [5]. In [4],
the first generators of the Yangian had been obtained, and the aim of this paper is to display
the full algebra. To characterize it, we have constructed a transfer matrix which satisfies
the exchange relations [6,7] resulting from the Yang--Baxter [8] equation, (often cailed the
RLL = LLR relations). In the limit of infinite separation of the sites, this transfer matrix
reduces to the usual XXX chain form [8]. To prove the exchange relations, we have used
the differentials operatars defined in [9-11] to ‘guantize’ the spectral parameter of a standard
transfer matrix.

In this work, we also consider models for which the lattice sites are replaced by
dynamical particles, see also [12-15]. They are the spin generalizations of the Calogero—
Sutherland models [16-18]. In these models, there also exists a transfer matrix cbeying
the Yang--Baxter equation. However, an important difference between the two situations is
that the transfer matrix of the dynamical models always commutes with the Hamiltonian,
whereas in the Jattice model case, it commutes only if the lattice is translation invariant,
The generating function for the Hamiltonians is not given by the trace of the transfer matrix,
because this trace does not commute with the Yangian. In the dynamical case it is given by
the quantum determinant. In the lattice case, the determinant is a c-number which contains
enough information to recover the spectrum degeneracies.

In section 2 we define the dynamical models. In subsection 2.1 we prove the Yang-
Baxter equation for the transfer matrix. In subsection 2.2, we derive the conserved quantities
which we diagonalize in subsection 2.3.
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In section 3, we consider the spin models. In subsection 3.1, we relate the decomposition
of the su( p)-spin chain into irreducible Yangian representations to the spectrum degeneracies
given in [4]. In subsections 3.2 and 3.3, we describe the relation between the spin chains
and the dynamical models and we use this relation to find the energy spectrum and the
highest weight vectors.

In section 4, we show how the results of the previous sections can be extended to the
case of a trigonometric R-matrix.

2. The dynamical models

The dynamical models are su{p) generalizations of the Calogero-Sutherland model. There
are M particles interacting by long-range forces. Their positions are parameterized by
complex numbers z;, { = 1,:--, M, and each particle carries a spin ¢ with p possible
values. If the particies are on the unit circle, we take z; = exp(iv;), and if they are on the
line we take z; = exp v;, with v; real. Their dynamics are governed by the Hamiltonian

ZjZ§

M
Hp=) (z3;)>+ ) MPy+3) @.1)
J'=

=1 istf (2',' _zj)(zj - Z;‘)
where X is a coupling constant and P;; exchanges the spins of the particles i and j.

Integrability is guaranteed by the existence of a Lax pair. It consists of two matrices
L;; and M;; with operator entries obeying

[HD, L,’j] = Z(L,‘kMkJ - Miij;j) . (2.2)
*

A possible choice is given by
LU = 5,’_;2‘,‘3:‘, +({I - 3;})1.9” P,-J'

Mij = —8,20 Y (hut Pud + 201 = 8)hij Py @3
k

with

I
g =

P fl,'j = 6,'_,'91; . (2.4)

We denote by X}‘”, a,b=1,...,p, the matrices which act as |a}{P| on the spins of the

Jth particle and leave the other particles untouched. Using equation (2.2) and the fact that
[Hp, X f”] =3, X¢"My; and 3. Mi; =0, one deduces that the quantities defined by

ek = 3 XE(LT)y 2.5)
]

commute with the Hamiltonian Hp. Here L” denotes the nth power of the matrix Lj;.
Since the T,;"’ do not commute with each other, the spectrum is degenerate. We study their
algebra in the next section.
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2.1, The transfer matrices

In order to arrange the algebra of the T,fb’s, we introduce the transfer matrix T (u) obeying
the Yang—Baxter equation

Roy (it — VT @) TY () = TV ()T w) Rog (1 — v) . (2.6)

According to standard notation [7)], T°(u) denotes the matrix T{#)}®1 and TY (v) the matrix
1 ® T(v). The matrix R(x) is the solution of the Yang—Baxter equation given by

R{u) = u + APy (2.7)
where Py is the permutation operator which exchanges the two auxiliary spaces 0 and (.

Equation (2.6) expresses the non-commutativity of the operator matrix elements of T (u).
The expression which we obtain for T°u) is given by

M
rw=1+13 A (727) @8
T}

L=t

where L is the matrix defined in (2.3). If we set T%u) = Y7, XJ T*(«), and expand
it in powers of 1/u, we find

o0
A
b __ xab ab
T4 (u)-&“ + E :‘n_-H'T;‘ (2.9)

n=0

where the 74%’s have been defined in (2.5). We can motivate this expression as follows:
It commutes with the Hamiltonian Hp, the 1/u? coefficient coincides with (a slight
generalization of) the generators of the Yangians identified in {4], and, as we will discuss in
a next section, in a specific limit it gives back the transfer matrix of an X X X chain. When
the z; which define the functions 6;; in equation (2.4) are complex numbers of modulus one,
an important property of this transfer matrix is its hermiticity: T («) = T%(&).

In order to prove (2.6), we use operators introduced in [10-12] in the physics literature
and known in mathematics under the name of Dunkl operators [9,19-23].

Let us define the three permutation groups: E;, Z; and T3 respectively generated by
Kij, P and the product (P;;K;;). The operator K;; exchanges the positions 2, and P;
exchanges the spins at positions { and j: i.e. Ki,z; = 7 K;; and Pjj0; = 0; P;. We define
the differentials (Dunkl operators)

Dy =28, + A 0,Ky . (2.10)
i#)

They obey the relations
K,'_;D,- = D K
K}jD] = D}KU
2.11)
K:‘jDk:DkKU lfk?él‘,j

[D,‘, Dj] =A(D; — Dp} K5 .
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We also define a projection m which consists to replace the permutation Ki;;( by the
permutation Pj;y after it has been moved to the right of an expression. Equivalently, we
set equal to 1 a permutation of X3 appearing to the right of an expression. We use it to
eliminate the permutations of T; by replacing them with those of T,. For example

n(K2) = Pz

2.12)
#(K\2Kn) = PPy .

One can view this projection as the result of acting on bosonic wavefunctions symmetric

under permutations in L. The expression (2.8) of the transfer matrix then takes the
following formi:

Tw) =:r(1 +Af: —-‘3"'—) (2.13)
u - Dj

which results from x(D]) = EJ L:}. Since T°(u) is invariant under simultaneous
permutations of the spins and the coordinates, a product of projections can be replaced
by the projection of the product, Therefore, we omit the symbol 7 and set equal to one any

permutation of T3 appearing to the right of an expression. Equation (2.6) is then recast in
the form

Y APy; A Py; Ao\ APy;
(e — v+7LPoo‘)[Z(l + u—oDi)(l + U__O;Ji) + Z(R_OD,)(U _0'61)]

i=1 [y

M
_ APy, APy
—[z(i+v—0i)(l+u—l)l)

f‘=l

lP(yj APy _
G e s

First consider the sum over i; each term in the sum is a Yang-Baxter equation for an
elementary transfer matrix, T;(u) = | + APy /(# — D;), with a spectral parameter equal to
u — D;. The equality is therefore satisfied by each term independently. Then, consider the
sum with i £ j. Using the identities

(2.14)

Poo Poi Py = Kij Poi Py j (Kij Piy)
(2.15)
Poi Py Poy = Ky Pi Poj(Kij Pij)

the remaining terms reduce to

1 1 1 1
orertn (L) ()~ () (p)ecvonea

or equivalently

(@~v+AKi)u~D)(v— D}y ==~ D)(u—DiYu—v+rKy). 2.17)

t A similar expression has independently be obiained in [24].
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This results from (2.11). It proves the Yang—Baxter equation (2.6) for the transfer matrix
given in (2.8).

We now give an alternative description of the transfer matrix. Let us modify the
differentials D; introduced in (2.10) as follows:

=Di—AY K=z, +13 0;K; - 0Ky . (2.18)

J=l J=i J=i

Unlike the D;, the differentials D; commute but they do not transform covariantly under
the permutations any more. They obey the defining relations of a degenerate affine Hecke

algebra [25]+
[D:, D=0
[Kigt, Di] =0 ifk#ii+] (2.19)
Kii+1Di — DiyiKipn = 2 .
From these relations, one deduces the commutation relations
[Kitr, =D —Dir)] =0 (2.20)
which imply that

M
Ay = [~ D) (221)
f=l

is invariant under the permutations of the coordinates (Z;).

In term of these differentials, we can define 2 transfer matrix which satisfies the Yang—
Baxter eguation. It is given by

APy ( APy ) ( A Pou )
?0 =11+ —a 14— |- 14+ ——]. 2.22
(u) ( +M—D1) u"'Dz +u—D,-,; ( )

The right-hand side of (2.22) is the co-product of elementary transfer matrices ﬁ with their
spectral parameters equal to u — D;-

The transfer matrix T%() = m(T%()) will satisfy the Yang—Baxter equation if we can
replace the Ro jection of the product ToTY by the product of the projections. For this
to be true, T® applied on a bosonic wavefunction must still be a basonic wavefunction.
Equivalently, we must have

(T = (7% . ' (2.23)

Since the denominator AM (u) of 7o {u) commutes with Z, it suffices to show the above
equality for the product AM(u)To(u) Then, equation (2.23) results from the identities

7 {Kippr (u — D; + Py — Dypa + Pai+1)) = Piigim (4 — Dy + Po)(u — Digy + Poist))
(2.24)

which can be shown using (2.19).
For a small number of particles, we have verified that :r( } coincides with the
expression of T in (2.13) and we shall assume it is true in the following.

f The role of affirc Hecke algebras has been stressed by 1 Cherednik in [21],
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2.2. The conserved quantities

One usually generates the conserved quantities by means of the trace of the transfer matrix.
This defines quantities which commute among themselves but not with the T,2. Here, in
order to satisfy this condition, we are led to take the quantum determinant as the generating
function. It is given by {5,6,26) '

Dety T(@) = Y €(0)Tioy (s = (p = DM Tany (4 = (p ~ 2)A) - T (1) - (2.25)

gELp

The first two non-trivial terms produce the momentum and the Hamiltonian

Dety T(w) =1+ = ayyp (Zz, M—("L-—)-)

MM — 1}{(M -2
+ = (HD+A(M—1)Zz,a +a2 M 6)( ))-;--.-. (2.26)
i=1
To compute the quantum determinant of T () it easier first to evaluate the determinant of
the unprojected transfer matrix (2.22). It is equal to the product of the quantum determinants
of each factor T defining T(u) and is given by

Det, Tu) = 2u T4 2.27)
Aput)
where Ay (u) is defined in (2.21). Then, arguing as in the last section, we can replace
KM (u) by its projection A (u) in (2.27) to obtain the quantum determinant of T (u).
The coefficients C, of the polynomial Ay(u) define a complete set of commuting
operators:

Co= Y. n(D,D,--D;). (2.28)

iy ey,

The first three coefficients are given by

C = Zz;az,.
i

— z : i . g ZrZj
= i< 1970 + 40+ ) (21 — z5)?
(2.29)
= i, 0,2y 8y )\'2 L% (P Py — Py Py;
Cs i;jdz 0,278y, 2 0, + @ =G - s 3 P — Py Pyp)

+ ((z = z;)? A(A + Pyj)z8,, + cyclic permutauons)
i

When there is no spin dependence (Calogero-Sutherland model), we have verified that the
expression for Ay (#) is equal to the determinant defined in [27]. However, the evaluation
of the determinant [27] is much easier than the one of A(x) and shows that the coupling
constant A enters the conserved guantities via the combination A(A + 1).
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Finally, let us discuss the rationat limit of the preceeding resuits. If we set z; = exp(y ;)
and let ¥ go to zero, the Hamiltonian becomes

AP+ A
—-Z(av,)2+Z il @30)
iz Vi =)

In order to reach this limit, we need to rescale D; and A by y. When y goes to zero, the
T algebra degenerates to

[T, To'] = 8Tt = 8aa Tt - (231)

In that case, the traces ), T%° define the conserved quantities which commute with the
Tdb

2.3. Diagonalization of the conserved guantities

Let us obtain here the eigenvalues of A(s). Our method is first to diagonalize the
differentials D;. In this way we find the eigenvectors of A(x). Since A(u) is invariant
under s, we can symmetrize these eigenvectors with respect to the spin and coordinate
permutations to obtain the eigenvectors of A(u) with the same eigenvalue. In order to
do this, it is convenient to make a gauge transformation which amounts to substituting
20, — JLZ#,(z, + z;)/(zi — zj) for z;8, everywhere. Hereafter, we indicate with a
prime the gauged transformed quantities. The gauge transformed differentials D’ take the
following form:

- M+1
D: = 23, +l( 3 —l) +7LZQU(K;,' - —Azeﬁ(&-i =1}, (2.32)

=i J<i

Their action leaves the space of polynomials in z; invariant. We consider the basis of
monomials

(21, 220 ..., 2y) = 2)'25% - - Z4f (2.33)

where [n] is a sequence of positive integers. With a sequence [n], we associate the partition
|n} where we arrange the n; in decreasing order. We define an order on the partitions by
saying that |r| is larger than [n'] if the first non-vanishing difference n; — n;, is positive.
it follows from the same argument as in [17] that the differentials D] are represented by
block triangular matrices in the basis @y (z;). Namely

Bi®um) = > [@odimtm P (20) (2.34)

with (di}yyin = O if |n'| is larger than |n}. Therefore, the eigenvalues of the differentials
D are given by the eigenvalues of the block matrices on the diagonal. Let us consider such
a block dl'” ((dhwinm) with | a fixed partition |n| = (n) 2 n3 2 -+ 2> ny). In the
basis 1y, Aoy, - - -, May, ), the d take the following form:

. M+l
d,-"lna.,---.na,.,>=(nu,+A(-T+--I+ZXU—ZXjf))lnm,---,nm (235)

J=i J=t
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where the X;; are defined by

_l"'snd’g!---:ndj:"') ifn.,-,>na}
Xijl"‘nnrr”---snap"')= 0 if 5, = nq, (2.36)
I"'vnﬂje-.‘;nau“') ifno-“::ﬂqj.

The matrices d"’ ! are triangular when we order the states inside a block by saying that [»'] is
Jarger than [n”] if the last non-vanishing difference n,—ny is positive. With the global order
induced by this choice the matrices D’ are also triangular. It follows that the eigenvalues,
55"], of d,'"‘ are the diagonal matrix elements, (d;)jxn). One readily sees that the multiplets

of eigenvalues, (8!”');'=|,M, of the d,!"l’s are all obtained by permuting the components of
the multiplet

"y =[n,- + l(z’ ~ M—ZH-)] i (2.37)

As a resuit, the corresponding eigenvectors of D’ form a degenerate set of eigenvectors of
A () with the eigenvalue

M
() = ]‘[[u —nj— 3.( _ -MZ—H)] : (2.38)

j=t

These eigenvectors form a representation of X, isomorphic to the obvious representation
of the permutations on the sequences [n]. To obtain the eigenvectors &(z;, o) of A'(u),
one must combine these eigenvectors with a spin component and symmetrize the tensor
product with respect to ¥s. The eigenvectors of A(u) are finally obtained when we multiply
®(z;, o) by the function of z; which removes the gauge transformation. The eigenfunctions
are written as

W(z,0:) = &z, 0) | [z — 27z - 2y ¥ (2.39)

i<j

There is an alternative (fermionic) construction of the transfer matrix (2.8) if we modify
the definition of 7 and define (K12} = — P12 instead of (2.12). In this case the sign of
A has to be changed in the definitions of D; (2.10), (2.18), (2.32) and, consequently in the

expression of the eigenvalues of A{u) (2.38). The fermionic eigenstates of A(u) take the
following form:

V(zi, o) = Sz, o) | [z — ) (21 - - 2pg) ™M (2.40)
i<f

where ®(z;, 6;) is obtained by antisymetrizing the eigenstates of 5; with respect to Xs.
This construction will be useful to establish an equivalence between the dynamical and spin
models in section 3.
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24. A remark on the shift operators
We recall that the Calogero—-Sutherland Hamiltonian is given by (2.1) where P;; has been
set equal to one

ZiZ;

H, = E(z,az,)=+m+ DY = (241)

= - 7))z —z)
The shift operators [9,19,20.28] which we denote by Ap and Ap, intertwine the Calogero—
Sutherland Hamiltonians with coupling constants A and (A £ 1). They are characterized
by

AFHA—I = H)Arp
(2.42)
ABH,\ = H,_1As .

Hence, if ¢ is an eigenfunction of H,_;, then A9 is an eigenfunction of H,, and similarly
with Ag. These intertwiners can therfore be used to compute the eigenfunctions of the
Calogerc—Sutherland Hamiltonian with an integer coupling constant A using those of the
free Hamiltonian Hy. They can be understood from the Yangian point of view. Indeed,
notice that in the representation where the permutation operators P;; are equal to 1 the
dynamical Hamiltonian (2.1) reduces to the Calogero—Sutherland Hamiltonian with coupling
constant A and (A — 1).

To construct the shift operators, let us define bosonic and fermionic projections g and
ag by np(K; J) = +1 and nr(Ki;) = —1, respectively, when this permutation is at the right
of an expression. The quantities :rg(A(u)) = Au(w) and mp(Au)) = Ay (u) = Asq ()
are the generating functions for the commuting Hamiltonians of the Calogero—Sutherland
models with coupling constants respectively equal to A and (A — I). The equality
A_,(u) = A;_1{u) is due to the fact that A;(u) only depends on A{A 4 ). Consider
now the operator A defined by

A= Ze(a)o,t; L. D2 D, (2.43)

where the sum is over the permutations. Since the differentials D; transform covariantly
under the permutations and commute with A(u), A commutes with A(u) and is odd under
the permutations

AAG@) = A@A

KA =—AKj; .
Projecting the first of these equations with mg or = gives
Apdi () = na(RAW) = mp(A@)R) = Ar_i () As
(2.45)

ApAjp_1 () = me(AA ) = mp(A@)A) = A, W) AF -

Here we have defined Ag = m;(X) and Ap = ﬂF(K) and used the fact that Z(u) commutes
with K;;. It shows that Ag, Ar are shift operators.
The shift operators for two particles are

2+ I
-2

Finally, we point out that the Calogero—Sutherland Hamiltonian has a symmetry when
A = A" which is discussed in {29].

App=me (D) — Dy} =218, — 7220, £ A

(2.46)
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3. The spin models

The Hamiltonian of the su(p) spin modei is [1,2]

D d
Z; 2

;—*—-—( e - G.1)

The indices i, j refer to the sites of the chain which we take of length N and the %, are
complex numbers parametrizing the positions of the sites. The trigonometric spin chain
corresponds to Z; = exp(iZirk/N).

Unlike in the usual cases, this model is not solvable by the Bethe ansatz. To solve it, we
shall first decompose the spin chain Hilbert space into multiplets of degenerate eigenstates.
Then we shall compute the energy spectrum by acting with the Hamiltonijan on a particular
state (e.g. the highest weight vecior) in each multiplet. These states are identifed by using
a relation bewteen the spin and the dynamical models.

Hg =

3.1. The transfer matrix and the degeneracies

In this section, we use the transfer matrix formalism to deduce the decomposition of the
su(p) spin chain into irreducible Yangian representations. The transfer matrix is the limit
A = 00, ufd = x fixed, of the matrix (2.8)

0 1 )
T(x)—1+”Z_: Po;(x I), (3.2)

with Ly = (1 — &,)8,; Py;. é}, is defined as 6, in (2.4) with % substituted for z;. If
we put the sites on the real axis and let the distance between them go to infinity with
Q<D K% €55, the 8. ; converge to the step function 8({ — j) and the transfer matrix
reduces to its usual form

) = (1 + P )(1 + %‘-’3) (1 + f;ﬁ) (3.3)

For generic values of the complex numbers Z;, the representation of the Yangian algebra
¥(sl,) obtained in this way is irreducible. Thus, its quantum determinant is a c-number

which we can evaluate on any vector. Choosing the vector with all spins o; equal to p
gives

1 Aylx+1)
Tix)y=1 = . 34

Here @ is the N x N matrix with matrix cicaients 5,' ; and Apn(x) is its characteristic
polynomial

An(x) = det(x — ©) . (3.5)

Although the transfer matrix satisfies the exchange relations (2.6) for all values of the
parameters Z;, it commutes with the Hamiltonian (3.1) only if [4]:

Y 8@, -8 =0. (3.6)
i
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In order to satisfy this condition, we choose either Z; = exp(i2nk/N) withk =1,..., N
(trigonometric models) or 7, = exp(yk) with & integers (hyperbolic models). Diagonalizing
©, we obtain the following expression for Ay in the trigonometric case:

Y N+1
A~(x)=]'[( -5 +j). e

j:l

In the trigonometric case, as a result of the Hermiticity of the transfer mafrix, the
Yangian algebra is completely reducible. Let us here deduce which possible irreducible
representations can occur in the decomposition of the spin chain Hilbert space. Irreducible
representations of the su(p) Yangians are characterized by p — 1 polynomials Pi(x),
k=1,...,p—1[2530], in the following way: in a canonical normalization, the transfer
matrix, T.(x), is a rational function of x and one can find a highest weight state, |A}, such
that

1 * ves *
Pz_al.l'-i-l) *
Pp—l(-ﬁ
T(x)A) = | | ) _ i |A) . (3.8)
P, Py 1(x+D)
0 0 0 lP]...P;_f(x)

In each irreducible block appearing in the decomposition, the transfer matrix applied on the
highest weight differs from a canonical form (3.8) by a multiplicative factor ¢(x). Using the
fact that A{x)T (x) is polynomial in x and that the roots of A(x) form a string of consecutive
integers, one can show that ¢(x) is necessarilly of the form ¢{x) = P,(x + 1)/ P,(x) where
P,(x) is a polynomial in x. If we evaluate the quantum determinant of T'(x) in this block
we obtain the following equation for A(x):

A(-x)=Pp(-x)Pp(x—'l)"'Pp(x“"p"'U
X Ppo1(X) Ppi(x = 1) oo Ppy(x —p+2) -+

%X P{x) . (3.9)

The possible solutions for the polynomials Pi(x) thus correspond to the possible ways to
partition the roots of A(x), {{; = (j - (N + I)/2),j = 1,..., N}, into sets of k-strings
{vo —n,n=0,...,k — 1} where y are the roots of P(x). Fach distinct solution for the
set of polynomials P;(x) corresponds to a highest weight state.

The classification of the invariant subspaces, each with a unique highest weight state,
is now straightforward, and reproduces the empirically determined structure obtained by
analysis of numerical diagonalization studies of Haldane {4]. The partition into strings can
be described by a sequence of N — 1 binary digits ‘0’ or ‘1’ inserted between consecutive
roots, indicating whether consecutive roots belong to the same string or not. A ‘0’ can be
added to each end of the sequence, so ‘0’ indicates the end of a string, The vacuum state,
which only occurs if N is a multiple of p, is obtained when all the roots are partitioned into
consecutive p-strings, so Pi(x} = 1 for ¥ < p. This corresponds to the ‘“trivial’(singlet)
representation; for p = 3 and N = 9, the binary sequence is *0110110110", or in the motif
picture [4] (1D{11)}11).
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Each motif corresponds to a set of su(p) sub-representations which give the degeneracies
of the spectrum. In the su(2) case for example, the series of g consecutive ‘0’ bordered by
‘1’s correspond to the natural spin ((g — 1)/2) representaion of su(2). The representation
content of a motif is the tensor product of these representations. In the su(p) case, the
description of the the motifs in terms of representations is more involved, However, the
multiplicities can probably be more simply obtained by considering the ¢ = 0 limit of the
trigonometric models considered in section 4 (crystal basis).

3.2, The transfer matrix and the spectrum

The previous classification characterises the possible invariant subspaces without telling
which irreducible blocks appear and with which multiplicities. Neither does it give the
energies of the motifs. To answer these questions we establish a relation between the spin
and the dynamical models which enables us to identify the highest weight states of the chain.
More precisely, we characterize a class of states [¥) which are annihilated by the last line
of the transfer matrix (except the diagonal element), T7*|¥) =0 fora=1,..., p— 1, and
on which the first (p — 1) lines and columns of (3.2) act as the dynamical transfer matrix
{2.8) where we set A = 1. Using this connection we show that any motif is actually realized
on the spin chain and we compute its energy.

To specify this class of states, it is useful to describe the spin chain Hilbert space in
terms of magnon states. An M-magnon state |V} is given by

W= 3 Y gmee .of|Q) (3.10)

Wheenly OKH | <oty <N

where 6%, with @ = I, ..., p— 1, denote the matrices X,” = [a}(p| acting on the nth spin,
and |2} is the fcrromagnetic statc with all spin equal to p |2} = |p, ..., p}. Let us extend
the range of definition of %! 4 10 0 < n; < N by requiring that it is symmetric under the

simultanous permutations of the coordinates n; and the spins «; and that it vanishes when
at least two of the n; are equal. With any M-magnon state we can associate a polynomial
W{z;; ;) of degree less than (N — 1) in each variable z; such that

W™, ..., o™ a;) = fgio 3.1

] axnsal A

These polynomials are symmetric under the simultanueous permutations of the spins and

coordinates (Z3). The class of states we consider are associated with polynomials of the
form

M
Wz, o) = [ | 2 [ [ (zp — 29) 0z ) (3.12)

p=t p=<q

with ®{z;, ;) a polynomial of degree less than (N — M — 1) in each variable z;,
antisymmetric with respect to Xj.

In the next section, we show that on the class of states specified by (3.12), the spin
transfer matrix acts as the matrix t*®(x) given by

ab
t“”(x)\lf(z,,a,)—(1+z D )lIl(z,,a;) a,b=1,....p—1 (3.13)
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where

Dy =58, ~ 32 4+ 6, K 3.14)
rés
The number of particles is the number of magnons. Furthermore, these states are annihilated
by the elements TP*(x), a2 = 1,..., p — 1 of the transfer matrix.

Before we establish the equality of T°° and 9%, let us show how it enables to associate
an invariant subspace of T(x) with an invariant subspace of #(x). For this let us diagonalize
the product §(x) = ]'Is_l(x-— ,) where Ds Dy Z <5 Krs- By the fermionic construction
of section 2.3 it is achieved by diagonalizing the D; on polynomials of the form

M
W) =[]z [J@ - 2)0@) . (3.15)
=1 p<q

The eigenvalues of 8(x) are characterized by a partition || = (y 2 m2 2 --- 2 ny) and
are equal to

< . N+1
Bip) = g (x — f5) with f; =n;+5— —5—. (3.16)
The corresponding eigenstates of 8(x) are such that the monomial of highest degree of
®(z) is equal to z7! ---z74. They are associated with a state of the chain by the above
correspondance only if n;, < N — M — 1, therfore the f; must satisfy the following
inequalities:

N-1 -1
—“——2_-<..fH< <h<fig —-5——"1- (3.17)
In addition, at most (p — 1) integers n; can be equal, i.e. at most (p — 1) integers f; can
be consecutive, since the spin wavefunction ®(z;, ;) (3.12) is antisymmetric,
When we evaluate the quantum determinant of T (x) on this class of states in terms of
8(x), we obtain the following equation for A{x):

AW = Py(x) - - Pplx)mlx — 1) (3.18)

where the polynomals Pi(x) have been defined in (3.8). Comparing this equation with
(3.9), we see that the f;’s completely determine the position of the roots of the polynornials
Py(x). Namely, the way to recover the binary sequence which characterises the invariant
subspace consists in inserting a ‘1’ between consecutive roots of A{x) if the smallest root
is equal to f; for some /, and a ‘0" between all other consecutive roots.

This result extends to the su(p) transfer matrix the known correspondence between
the su(2) spin chain and the Calogero-Sutherland Hamiltonians [1,2,31,32]. In the next
section we show that on the states (3.12) the spin chain Hamiitonian acts as follows:

M
- I NN/~ 1 N
= Dy + =+ — ———_}. 3.1
H ,E=1( +2+2)(D,+2 2) (3.19)

Therefore, the energy of a motif f; is

H= with € = +-] ——. 3.20
Dty withelf) (h+3) - % (3.20)
All states in the same invariant subspace are degenerate. The energy spectrum (3.20)
satisfies a nice additivity property The symbols ‘1’ of a motif code the occupation numbers
of quasi-particles with energies e{f;). These quasiparticles obey a generalized exclusion
principle [3] which is refiected in the rules to fill a motif,
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3.3. The correspondence between the spin and dynamical models

To establish the correspondence between the chain and the dynamical models, it is
convenient to use the expression (2.13) of the transfer matrix before it is projected by
7. Here, we consider the additive form (2.13), a similar argument can also be applied to
the multiplicative form (2.22). Let us enlarge the Hilbert space of the chain by introducing
states |I"} which are described by a spin and coordinate wavefunction as follows:

Ty =" T ie;) @ In) (3.21)

® "

where |o;) cicscribe the spin configurations of the chain and the permutation

n=(1 2 o N) (3.22)

M Ry < NN

describes the coordinate configurations. On this Hilbert space, there is a natural
representation of the operators z; and Kj; given by

zx|n) =7n, in)

(3.23)
Kyjin) = Wijn) .
In this way, we obtain a realization of the differentials D; defined by
D =Y 8;Ky (3.24)
i

which obey the relations (2.11) with A = I. The Hilbert space of the chain is recovered
when we restrict ourselves to (boson) states invariant under the simultanous permutations
of the spins and the coordmates (X3). Since the states of the chain are characterized by

-----

permutation

(1d|'g) = ZF"" N lenaz e . (3.25)

The projection by 7 of an operator X which preserves the bosons is defined by

{Id | X|Fg) = x(X){1d |T's} . (3.26)
Thus, if we apply the projection 7 to the operator
5 Py
Tx) =1+ ; =T (3.27)

we recover the expression (3.2) of the transfer matrix.

For our purpose, it is more convenient to represent the magnon states by wavefunctions
such that the magnons occupy the first M sites of the chain and the N — M last spins are
all equal to p. Therefore, we define a projection Py acting in the M magnon sector by

N
Pyl ---ay) =( I aa,.,,)lm--'am. (3.28)

f= M +1
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The M-magnon states which are characterized by the wavefunction (3.10) are given by the
projection by Py of the bosonic Hilbert space on the states

Wa) =D D Py ay} @ lny -+ ny) - (3.29)

o Ry

Here, because of the bosonic nature of the states, we need only keep the M first indices n;
of the permutation n to define the state |n). In the same way as in (3.26), we define the
projection py of an operator X acting in the M-magnon sector by

PuX\Tp) = pu(X) Pull's} .~ (3.30)

Let us consider the projection by py of the first p — 1 rows and columns of the transfer
matrix (3.27)

Xab
pu(T%) "'PM( ab+2x_pl) (331

forl€a,bgp—
Ftrst, only the ﬁrst M first terms of the sum contribute because pM(X?”) = 0 if

i 2 M+ 1. Then consider the representation of the differentials D; on the projected
Hilbert space

M
DMy =Y Bpm Ky irseon) + D Ba¥ulkama,.ony) . (332)
i=1 kFEN ...y

The second sum can be extended to all £ since we assume that the wavefunction vanishes
when two arguments are equal. We now on specialize to Z; = exp(i2rk/N). In that case,
one can show that polynomials P(z) of degree between 1 and N — 1 satisfy the identity

N
(za - -+—‘) P() = Zemm) (3.33)

Therefore, on the class of wavefunctions associated with the polynomials (3.12) we can
replace the differentials D; by the differentials D; defined in (3.14). This shows the equality
of the transfer matrices py(7") and %" defined in (3.13) on this class of states. Similarly,
one could show that the matrix elements py(7%) vanish on those states which establishes
the correspondence used in the last section.

Finally, consider the generalized Hamiltonian

H=>Y 6,6k (3.34)
i<f
whose projection by & is the spin chain Hamiltonian, One can show [33] that it commutes

with K;; and D; in the representation (3.23) if the conditions (3.6) are satisfied. Therefore,

it defines a conserved quantity for the chain. Similarly as above, one can evaluate py (ﬁ)
to obtain

puiH) = (D + 5+ -—) (D, +5- —) : (3.35)
; 202 2 2

We used this equation to find the spectrum in the previous section. In the chain case, unlike
in the dynamical case, we have not obtained the generating function for the conserved
quantities.
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4. Trigonometric models

The aim of this section is to repeat the construction of the transfer matrix in the trigonometric
case where the Hecke algebra plays the role of the permutation algebra. Consider the
representation of Yang’s relations

Yia(ur — w2)¥o3(uy — uz)¥i2(uz — uz) = Yos(ua — u3)¥12(uq ~ us)Yas(uy — u2) 4.1
given by [34]

Yiet () = ¢%tii1 — b7y 4.2)
where the #;;4; are the generators of a Hecke algebra .

(s — DU +¢71) =0

Liitiirabiiet = Lot fiee (4.3)

Hiigt, 4j41] =0 ifli—jl=2.

If we let the permutations Fy; act in the natural way on the indices k, [ of £, the operators
defined by

Rij(ui — uj) = Yoy — 1} Py 4.4)

obey the Yang—Baxter equation

RyaGuy — uz) Rialuy — #3) Rasuz — u3) = Rya(un — wa) Ria(uy — us) Ria(uy — u2) .

4.5)
A transfer matrix '?“(u) which obeys the quadratic relations (2.6} is given by
TOu) = Ly (W) La(w) -+~ L () (4.6)
with
2" ito; — t_-I Py;
L;(u):w Yitoi — tgi )P @r

g ' @y - 1)

The y; are spectral parameters and, as before, the denominator is a normalization factor
which is not relevant for the following discussion. Let us assume that there exists another
realization of the Hecke algebra (4.3) generated by the g;;,; which commute with the f3x4
and the P;; but not with the y;. We define g-boson (fermion) states | g} (|Wg)) by

(it = tua)|WB) =0
(4.8)
(i1 + i)W = 0.

We require the g-bosonic subspace to be preserved by '?"{u). For this, we define a brojection
7 which substitutes #;, for g;;., to the right of an expression. The analogous condition
to (2.23) which ensures that T® = z(T%) obeys the Yang-Baxter equation is now

7@ T0) =t m(T) . (4.9)
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Equation (4.9)is realized if the y; obey the relations of an affine Hecke algebra
by y1=0
i+t y1=0  ifj#ii+1 (4.10)
i+ Yi — Y184, =0.
It results from the following equalities:
7(giit1LiLiz1) = tippamw(LiLligy) (4.11)

To obtain a representation of the transfer matrix we need to have the ;4. and the Fj; act
on the spins and the gy41 act on the coordinates z; of the wavefunction. The F;; permute
the spins, and for the %41 we can use the standard representation of the Hecke algebra on
the spin chain (see for example [35]). For the gi;+1 We can use the following representation
[36]:

gitrl = qKip1 — (9 — 94" N0in (Kipyy — 1) 4.12)

where 6;; is defined as before (equation (2.4)) and K;; permutes the coordinates 2; and z;
of the wavefunction. The y; are given by

=gkt g Kin 5. Kujgyy - Kioiygyoyy (4.13)
where the operator .S; multiplies the coordinate z; by a constant p
Sz, s Bk e Z) =W (B s OZhy e ZM) (4.14)

The transfer matrix 7:('?0) is finally obtained when we use the bosoni¢ condition (4.8) and

the explicit form (4.12) of g4+ to eliminate the permutations Kj;., on the right-hand side
of an expression

Kiip) = Y::+l(i) = @.‘L’.H_’i’i'.".'_ . (4.15)
Zit1 Ziv14 — ziq
Note that the ¥;,,(z) form a representation of Yang's algebra (4.1) for which the spectral
parameters u; are replaced by the coordinates z;.
The quantum determinant of 7'(u) is given by

_ Ayt
Det, T(u) = _Au @ {4.16)
where
Au(w) =m{(@*y — 1) (g% ym — ) @.17)

is the generating function for the conserved quantities. We do not repeat the diagonalization
of A(u) which is parallel to the discussion of the last section and yields the g-analogue of
(2.38).

The transfer matrix of the spin chain is obtained by setting p = 1 in the previous
transfer matrix. As for the Haldane—Shastry chain, we have not obtained the the conserved
quantities which commute with this transfer matrix.
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