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Yang-Baxter equation in long-range interacting systems 

D B e d ? ,  M Gaudint, F D M Haldanet and V Pasquierts 
t Service de Physique Tharique de Saclayli. 91191 Gif-sur-Yvene. France 
$ Depmnent of Physics. Princeton University, Princeton, NJ 08544. USA 
3 The Emiu SchrMinger InmationaJ Institute for Mathematical Physics, Pasteurgarse 67, 
A-1090 Vienna, Austria 
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Abstract. We wnsider the S U ( ~ )  spin chains with long-mge interactions and the spin 
genesalization of the Calogex4uWland models. We show thal their propenies derive from a 
transfer matrix obeying the Yang-Brater equation. We obtain the expression of the consewed 
quantities of the dynamical models and we diagonalise them. In the spin chain case, we establish 
the connection baveen the degeneracies of the specmm and the repmentstion Wry of the 
Yangians. We use a correspondence with the dynamical models to diagonalise the Hamiltonian. 
Finally, we extend the previous nsullS to the case of a trigonometric R-matrix. 

1. Introduction 

The most remarkable properties of the X X X  chain with long-range interactions 11.21 are 
that its specbum is additive and that the states are created by filling a ‘Dm sea’ with 
particles obeying a ‘generalized Pauli principle’ [31. Recenffy, it has become apparent 141 
that the algebras underlying the symmetries of these models are the Yangians [SI. In 141. 
the first generators of the Yangian had been obtained. and the aim of this paper is to display 
the full algebra. To characterize it, we have constructed a transfer matrix which satisfies 
the exchange relations [6,7] resulting from the Yang-Baxter [SI equation, (often called the 
R L L  = L L R  relations). In the limit of infinite separation of the sites, this transfer matrix 
reduces to the usual X X X  chain form [SI. To prove the exchange relations, we have used 
the differentials operators defined in [9-11] to ‘quantize’ the spectral parameter of a standard 
transfer matrix. 

In this work, we also consider models for which the lattice sites are replaced by 
dynamical pasticles, see also [12-15]. They are the spin generalizations of the Calogem 
Sutherland models [ 16-18]. In these models. there also exists a transfer matrix obeying 
the Yang-Baxter equation. However, an important difference between the two situations is 
that the transfer matrix of the dynamical models always commutes with the Hamiltonian, 
whereas in the lattice model case, it commutes only if the lattice is translation invariant. 
The generating function for the Hamiltonians is not given by the trace of the transfer matrix, 
because this trace does not commute with the Yangian. In the dynamical case it is given by 
the quantum determinant. In the lattice case, the determinant is a c-number which contains 
enough information to recover the spectrum degeneracies. 

In section 2 we define the dynamical models. In subsection 2.1 we prove the Yang- 
Baxtet equation for the transfer matrix. In subsection 2.2, we derive the conserved quantities 
which we diagonalize in subsection 2.3. 
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In section 3, we consider the spin models. In subsection 3.1, we relate the decomposition 
of the su(p)-spin chain into irreducible Yangian representations to the spectrum degeneracies 
given in (41. In subsections 3.2 and 3.3, we describe the relation between the spin chains 
and the dynamical models and we use this relation to find the energy spectrum and the 
highest weight vectors. 

In section 4, we show how the results of the previous sections can be extended to the 
case of a trigonometric R-matrix. 

2. The dynamical models 

The dynamical models are su(p) generalizations of the Calogem-Sutherland model. There 
are M particles interacting by long-range forces. Their positions are parameterized by 
complex numbers y .  i = 1,.  . . , M, and each particle carries a spin U with p possible 
values. If the particles are. on the unit circle, we take z j  = exp(iuj), and if they are on the 
line we take zj = exp uj ,  with uj  real. Their dynamics are governed by the Hamiltonian 

where A is a coupling constant and Pij exchanges the spins of the particles i and j. 

Lij and M i ]  with operator entries obeying 
Integrability is guaranteed by the existence of a Lax pair. It consists of two matrices 

[HD, L i j ]  = c ( L i k M U  - MikLkj) . 
k 

A possible choice is given by 

with 

We denote by Xyb, a, b = I , .  . . , p, the matrices which act as la)(bl on the spins of the 
jth particle and leave the other paJticles untouched. Using equation (2.2) and the fact that 
[HD, X y h ]  = Xi'Mkj  and cj Mij = 0 , one deduces that the quantities defined by 

commute with the Hamiltonian HD. Here Lo denotes the nth power of the matrix Lij .  
Since the T,"h do not commute with each other, the spectrum is degenerate. We study their 
algebra in the next section. 
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2.1. The transjfer matrices 

In order to arrange the algebra of the T;b's, we i n d u c e  the transfer matrix T ( u )  obeying 
the Yang-Baxter equation 

RW(U - V)T'(U)T'(U) = T " ( u ) T ~ ( u ) R ~ , ( u  - U )  . (2.6) 

According to standard notation [7], T'(u) denotes the matrix T ( u ) @  1 and T"(u) the matrix 
1 @ T(u).  The matrix R(u)  is the solution of the Yang-Baxter equation given by 

R(u)  = U + APw (27) 

where PW is the permutation operator which exchanges the two auxiliary spaces 0 and CY. 
Equation (2.6) expresses the non-commutativity of the operator matrix elements of T(u) .  
The expression which we obtain for To(u) is given by 

where L is the matrix defined in (2.3). If we set T o @ )  = 
it in powers of Ilu, we find 

XLTab(u),  and expand 

where the T$'s have been defined in (2.5). We can motivate this expression as follows: 
It commutes with the Hamiltonian f f ~ ,  the 1/u2 coefficient coincides with (a slight 
generalization of) the generators of the Yangians identified in 141, and, as we will discuss in 
a next section, in a specific limit it gives back the transfer matrix of an X X X  chain. When 
the zi which define the functions 0 ,  in equation (2.4) are complex numbers of modulus one, 
an important property of this transfer matrix is its hermiticity: Taht(u) = T h o .  

In order to prove (2.6), we use operators i n d u c e d  in [10-12] in the physics literature 
and known in mathematics under the name of Dunkl operators [9,19-23]. 

Let us define the three permutation groups: X I ,  X2 and X3 respectively generated by 
K i j ,  Pij and the product (P i jK i j ) .  The operator K i j  exchanges the positions zi, and Pij 

exchanges the spins at positions i and j: i.e. Ki,zj = ziKij  and Pijuj = U: Pij. We define 
the differentials (Dunkl operators) 

They obey the relations 

(2.10) 

(2. I I) 
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We also define a projection II which consists to replace the permutation by the 
permutation Pii+l after it has been moved to the right of an expression. Equivalently, we 
set equal to 1 a permutation of E3 appearing to the right of an expression. We use it to 
eliminate the permutations of E, by replacing them with those of &. For example 

(2.12) 

One can view this projection as the result of acting on bosonic wavefunctions symmetric 
under permutations in C3. The expression (2.8) of the transfer matrix then takes the 
following formt: 

(2.13) 

which results from %(Or) = c,Lb. Since To(u)  is invariant under simultaneous 
permutations of the spins and the coordinates, a product of projections can be replaced 
by the projection of the product. Therefore, we omit the symbol ir and set equal to one any 
permutation of E3 appearing to the right of an expression. Equation (2.6) is then recast in 
the form 

U - Dj 

(2.14) 

First consider the sum over i: each term in the sum is a Yang-Baxter quation for an 
elementary transfer matrix, Tj(u) = I + APoj/(u - Di) ,  with a spectral parameter equal to 
U - Di. The equality is therefore satisfied by each term independently. Then, consider the 
sum with i # j. Using the identities 

(2.15) 

the remaining terms reduce to 

(U - U + AKjj) (-) 1 (-) I = (-) 1 (-) 1 (U - U + A&J) (2.16) 
U - D j  U - D l  U - D l  U - D j  

or equivalently 

(U - U + h K j , ) ( ~  - D ~ ) ( u  - Dj)  = ( U  - D ~ ) ( u  - Dj)(U - U + M i ] )  . 
t A similar expression has independently be obLlined in [%I. 

(2.17) 
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This results from (2.11). It proves the Yang-Baxter equation (2.6) for the transfer matrix 
given in (2.8). 

We now give an alternative description of the transfer matrix. Let us modify the 
differentials D; introduced in (2.10) as follows: 

D; = oi - A K~~ = ziaz, + A  Ceij~i j  - A C O ~ ~ K ; ~  . (2.18) 
j<i j>i j < i  

Unlike the Di, the differentials zi commute but they do not transform covariantly under 
the permutations any more. They obey the defining relations of a degenerate affine Hecke 

~ a l s b m [ W t  

[E;, zj] = o  

= 0 if k # i , i  + I (2.19) 

K;i+i 6 - 6 i t l K i ; + i  = A . 
From these relations, one deduces the commutation relations 

A 

[ K i i t i ,  (U - D;)(u - 6+1)] = 0 

which imply that 
M 

A 

A y @ )  = n ( u  - E;) 
i= I 

(2.20) 

(2.21) 

is invariant under the permutations of the coordinates (XI ) .  

Baxter equation. It is given by 
In term of these differentials, we can define a transfer matrix which satisfies the Yang- 

The right-hand side of (2.22) is thzco-product of elementary transfer matrices 
spectral parameters equal to U - Di. 

with their 

The transfer matrix To@) = n(F(u)) will satisfy the YangBaxter equation if we can 
For this 

to be hue, T applied on a basonic wavefunction must still be a bosonic wavefunction. 
Equivalently. we must have 

replace the rojection of the product 3-v T T by the product of the projections. % .  

R ( Z 3 P )  =%(PI . (2.23) 

Since the denominator &(U) 0,f F(u) commutes with Cl, it suffices to show the above 
equality for the product AM(u)TO(U). Then, equation (2.23) results from the identities 

A A 

n(Ki i+l (u  - 4 + PWMU - @ti + h i t i ) )  = f' i i t ln((u - zi + PoO(U - 6 t i  + Pai t l ) )  

(2.24) 

For a small number of particLeS. we have verified that x ( p )  coincides with the 
which can be shown using (2.19). 

expression of T o  in (2.13) and we shall assume it is hue in the following. 

t The role of ailine Hecke algebras has been stressed by I Cherednk in pi]. 
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2.2. The conserved quantities 

One usually generates the conserved quantities by means of the trace of the transfer matrix. 
This defines quantities which commute among themselves but not with the Tih .  Here, in 
order to satisfy this condition, we are led to take the quantum determinant as the generating 
function. It is given by [5,6,26] 

The first two non-trivial terms produce the momentum and the Hamiltonian 

+ ... . (2.26) 
M(M - I)(M - 2) 

6 

M 
H~ t AM - i)Czja, +A* 

j=l 

To compute the quantum determinant of T ( u )  it easier first to evaluate the determinant of 
the unprojected transfer matrix (2.22). It is equal to the product of the quantum determinants 
of each factor 5 defining T(u)  and is given by 

(2.27) 

where K M ( u )  is defined in (221). Then, arguing as in the last section, we can replace 
AM@) by its projection A M ( u )  in (2.i7) to obtain the quantum determinant of T f u ) .  

The coefficients Cp of the polynomial A&) define a complete set of commuting 
operators: 

A A  

C p  = ,  n(Di,D;,...Eip) . (2.28) 
1 3  <-4, 

The first three coefficients are given by 

c1 = Cziaz. 
i 

C ~ = C Z , ~ , ~ ~ ~ , + A ( A + P ~ ~ )  zizj 

i c j  (Zi - Zj)* 

zi zj + A(A + Pij)z&i +cyclic permutations 

When there is no spin dependence (Calogerc-sutherland model), we have verified that the 
expression for AM@) is equal to the determinant defined in [27]. However, the evaluation 
of the determinant [U] is much easier than the one of A(u) and shows that the coupling 
constant A enters the conserved quantities via the combination A@ + I). 
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Finally, let us discuss the rational limit of the preceding results. If we set zj = exp(yuj) 
and let y go to zero, the Hamiltonian becomes 

(2.30) 

In order to reach this limit, we need to rescale Dj and A by y .  When y goes to zero, the 
Ttb algebra degenerates to 

In that case, the traces E, Tp define the conserved quantities which commute with the 
T,"b. 

2 3 .  Diagonalization of the conserved quantities 

Let us obtaic here the eigenvalues of A@). Our method is first to-diagonalize the 
differentials Df. In this way we find the eigenvectors of z(u).  Since A(u) is invariant 
under &, we can symmetrize these eigenvectors with respect to the spin and coordinate 
permutations to obtain the eigenvectors of A(u) with the same eigenvalue. In order to 
do this, it is convenient to make a gauge transformation which amounts to substituting 
zi&, - fAZj#;(y + zj)/(zi  - zj) for zia, everywhere. Hereafter, we indicate with a 
prime the gauged transformed quantities. The gauge transformed differentials @ take the 
following form: 

(2.32) 

Their action leaves the space of polynomials in zi invariant. We consider the basis of 
monomials 

q",(zI .z2. .  . . , ZM) = q z p . .  .r,. (2.33) 

where In] is a sequence of positive integers. With a sequence [n], we associate the partition 
In1 where we arrange the nk in decreasing order. We define an order on the partitions by 
saying that In1 is larger than In'/ if the first non-vanishing differencenk - ?I; is positive. 
It follows from the same argument as in [I71 that the differentials 0; are represented by 
block triangular matrices in the basis OI&). Namely 

with (di)ln,iiai = 0 if In'[ is larger than In[. Therefore, the eigenvalues of the differentials 
@ are given by the eigenvalues of the block matrices on the diagonal. Let us consider such 
a block d,!"' = ( ( d r ) ~ n - i ~ n " ~ )  with In1 a fixed partition In1 = (nl 2 nz B ... 2 n ~ ) .  In the 
basis In,, , n,, ..., ne#), the d,!"' take the following form: 
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where the Xii are defined by 

-I... .no,,  ..., n 9 . ' . . )  i f n ,  >no,  

X i j l . . . , n ,  ,,... 9 n o , , . . . ) =  0 if n, = n,, (2.36) 1 I... 1 n",. . . . . no,, ... ) if n,  c no, . 

The matrices d,'"' are triangular when we order the states inside a block by saying that [n'] is 
larger than In"] if the last non-vanishing difference n; -n; is positive. With the global order 
induced by this choice the matrices @ are also triangular. It follows that the eigenvalues, 
&!I, of d:' are the diagonal matrix elements, (dj)lnlln,. One readily sees that the multiplets 
of eigenvalues, ( S p l ) i = ~ . ~ ,  of the d,!""s are all obtained by permuting the components of 
the multiplet 

(2.37) 

A," a result, the corresponding eigenvectors of @ form a degenerate set of eigenvectors of 
A'@) with the eigenvalue 

#"'(U) = f i [ u - n j  - A ( j  - T ) ] ,  M+1 

j=l 
(2.38) 

These eigenvectors form a representation of XI, isomorphic to the obvious representation 
of the permutations on the sequences [ n ] .  To obtain the eigenvectors O(q ,  ui) of A'@), 
one must combine these eigenvectors with a spin component and symmetrize the tensor 
product with respect to C3. The eigenvectors of A(u)  are finally obtained when we multiply 
@(zi,  U))  by the function of zi which removes the gauge transformation. The eigenfunctions 
are written as 

Y ( z ~ , u ; ) = O ( z ~ , u ~ ) ~ ( z i - z j ) - ~ ( z ,  . . . Z M ) ' + ' ) * ' 2 .  (2.39) 
i cj 

There is an alternative (fermionic) consmction of the transfer matrix (2.8) if we modi@ 
the definition of IT and define X F ( K I Z )  = -P12 instead of (2,12). In this case the sign of 
A has to be changed in the definitions of Di (2.10). (2.18). (2.32) and, consequently in the 
expression of the eigenvalues of A(u) (2.38). The fermionic eigenstates of A(u) take the 
following form: 

where @(z;, U;)  is obtained by antisymetrizing the eigenstates of 6; with respect to X3. 
This construction will be useful to establish an equivalence between the dynamical and spin 
models in section 3. 
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2.4. A remark on the shifr operators 

We recall that the Calogerdutherland Hamiltonian is given by (21) where fir has been 
set q u a l  to one 

(2.41) 

The shift operators [9,19,20.281 which we denote by AB and AF, intertwine the Calogerc- 
Sutherland Hamiltonians with coupling constants A and (A & I). They are characterized 
by 

(2.42) 

Hence, if 6 is an eigenfunction of then Ap@ is an eigenfunction of HA, and similarly 
with AB. These intertwiners can therfore be used to compute the eigenfunctions of the 
Calogerc-Sutherland Hamiltonian with an integer coupling constant A using those of the 
free Hamiltonian H@. They can be understood from the Yangian point of view. Indeed, 
notice that in the representation where the permutation operators Pi/ are equal to rti the 
dynamical Hamiltonian (2.1) reduces to the CalogeMutherland Hamiltonian with coupling 
constant A and (A - 1). 

To construct the shift operators, let us define bosonic and fennionic projections J?B and 
XF by x ~ ( K i j )  = + I  and z ~ ( K i j )  = ;I, respectively, when this permutation is at the right 
of an expression. The quantities Q(A(U) )  = A I @ )  and J?F(A(u)) = A-,@) = AA-I(u)  
are the generating functions for the commuting Hamiltonians of the CalogeroSutherland 
models with coupling constants respectively equal to A and (A - I). The equality 
A,(u) = AA-,@) is due to the fact that AA(u) only depends on A(A + I).  Consider 
now the operator ;i defined by 

(2.43) 

where the sum is over the permutations. since $e differentials Di_transfohn covariantly 
under the permutations and commute with A@), A commutes with A(u) and is odd under 
the permutations 

(2.44) 

Here we have defined AB = K B ( ~ )  and AF = Z F ( ~ )  and used the fact that x ( u )  commutes 
with Kij .  It shows that AB. AF are shift operators. 

The shift operators for two particles are 

(2.46) 

Finally, we point out that the CalogeMutherland Hamiltonian has a symmetry when 
A + A-' which is discussed in [29]. 

21 + 22 

ZI - 22 
AB.F = xB.F(D~ - D ~ )  = zla,, - z2a, & A- . 
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3. The spin models 

The Hamiltonian of the su(p) spin model is [1,2] 

(3.1) 

The indices i, j refer to the sites of the chain which we rake of length N and the '?k are 
complex numbers parametrizing the positions of the sites. The trigonometric spin chain 
corresponds to Fk = exp(i2zkjN). 

Unlike in the usual cases, this model is not solvable by the Bethe ansatz. To solve it, we 
shall first decompose the spin chain Hilbert space into multiplets of degenerate eigenstates. 
Then we shall compute the energy spectrum by acting with the Hamiltonian on a particular 
state (e.g. the highest weight vector) in each multiplet. These states are identifed by using 
a relation bewteen the spin and the dynamical models. 

3.1. The transfer matrix and the degeneracies 

In this section, we use the transfer matrix formalism to deduce the decomposition of the 
su(p) spin chain into irreducible Yangian representations. The transfer matrix is the limit 
A + m, u/A = x fixed, of the matrix (2.8) 

with Lij = ( I  - S ; j ) & P j j .  q j  is defined as 8,j in (2.4) with Z, substituted for y. If 
we put the sites on the real axis and let the distance between them go to infinity with 
0 < 71 << % . . . < %N. the 0;j converge to the step function 8(i - j) and the transfer matrix 
reduces to its usual f m  

(3.3) 

For generic values of the complex numbers %, the representation of the Yangian algebra 
Y(sip) obtained in this way is irreducible. Thus, its quantum determinant is a c-number 
which we can evaluate on any vector. Choosing the vector with all spins ui equal to p 
gives 

(3.4) 

Here Q is the N x N matrix with matrix e tdents  6) and AN(x) is its characteristic 
polynomial 

AN(X) = &t(x - El) . (3.5) 

Although the transfer matrix satisfies the exchange relations (2.6) for all values of the 
parameters z ,  it commutes with the Hamiltonian (3.1) only if [4]: 
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In order to satisfy this condition, we choose either Tk = exp(ikk/N) with k = 1, . . . , N 
(trigonometric models) or% = exp(yk) with k integers (hyperbolic models). Diagonalizing 
8, we obtain the following expression for A N  in the trigonometric case: 

(3.7) 

In the trigonometric case, as a result of the Hermiticity of the transfer matrix, the 
Yangian algebra is completely reducible. Let us here deduce which possible irreducible 
representations can occur in the decomposition of the spin chain Hilbert space. Irreducible 
representations of the su(p) Yangians are characterized by p - 1 polynomials Pdx) ,  
k = 1. . . . , p - 1 [25,30], in the following way: in a canonical normalization, the transfer 
matrix, T&), is a rational function of x and one can find a highest weight state, 112). such 
that 

... * \  

l i  I 

In each irreducible block appearing in the decomposition, the transfer matrix applied on the 
highest weight differs from a canonical form (3.8) by a multiplicative factor &(x). Using the 
fact that A(x)T(x)  is polynomial in x and that the roots of A(x)  form a string of consecutive 
integers, one can show lhat #(x) is necessarilly of the form #(x) = PP(x + l ) / P p ( x )  where 
Pp(x) is a polynomial in x .  If we evaluate the quantum determinant of T ( x )  in this block 
we obtain the following equation for A(x) :  

A ( x ) =  PP(x)Pp(x- 1)...Pp(x-p t 1) 

x Pp-I(x)Pp-,(x - 1). . . P,-,(x - p +2). . . 

x PdX). (3.9) 

The possible solutions for the polynomials P&) thus correspond to the possible ways to 
partition the roots of A(x) ,  [ I ,  = ( j  - (N + l)/2), j = I ,  . . . , NI, into sets of k-strings 
{yt  - n, n = 0,. . . . k - 1) where y~ are the roots of Pk(x). Each distinct solution for the 
set of polynomials Ph(x) corresponds to a highest weight state. 

The classification of the invariant subspaces, each with a unique highest weight state, 
is now straightforward, and reproduces the empirically determined structure obtained by 
analysis of numerical diagonalization studies of Haldane [4]. The partition into strings can 
be described by a sequence of N - 1 binary digits ‘0’ or ‘I’ inserted between consecutive 
roots, indicating whether consecutive mots belong to the same string or not. A ‘0’ can be 
added to each end of the sequence, so ‘0’ indicates the end of a string. The vacuum state, 
which only m u r s  if N is a multiple of p. is obtained when all the roots are partitioned into 
consecutive p-strings, so S ( x )  = 1 fork c p. This corresponds to the ‘trivial’(sing1et) 
representation; for p = 3 and N = 9, the binary sequence is ‘01 101 101 10’. or in the motif 
picture 141 (11)(11)(11). 
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Each motif corresponds to a set of su(p)  sub-representations which give the degeneracies 
of the spectrum. In the su(2) case for example, the series of q consecutive '0' bordered by 
'1's correspond to the natural spin ((4 - 1)/2) representaion of 4 2 ) .  The representation 
content of a motif is the tensor product of these representations. In the su(p) case, the 
description of the the motifs in terms of representations is more involved. However, the 
multiplicities can probably be more simply obtained by considering the q = 0 limit of the 
trigonometric models considered in section 4 (clystal basis). 

3.2. The transfer matrix and the spectrum 

The previous classification characterises the possible invariant subspaces without telling 
which irreducible blocks appear and with which multiplicities. Neither does it give the 
energies of the motifs. To answer these questions we establish a relation between the spin 
and the dynamical models which enables us to identify the highest weight states of the chain. 
More precisely, we characterize a class of states IQ) which are annihilated by the last line 
of the transfer matrix (except the diagonal element), TpDIQ) = 0 for a = I ,  . . . , p - 1, and 
on which the first ( p  - I )  lines and columns of (3.2) act as the dynamical transfer matrix 
(2.8) where we set A = 1. Using this connection we show that any motif is actually realized 
on the spin chain and we compute its energy. 

To specify this class of states, it is useful to describe the spin chain Hilbert space in 
terms of magnon states. An M-magnon state 1'4) is given by 

(3.10) 

where U;. with a = I , .  . . , p - 1, denote the matrices X f p  = Ia)(pI acting on the nth spin, 
and In) is the ferromagnetic state with all spin equal to p 10) = Ip, . . . , p ) .  Let us extend 
the range of definition of #;;;-;;;; to 0 < ni c N by requiring that it is symmetric under the 
simultanous pennutations of the coordinates ni and the spins cxi and that it vanishes when 
at least two of the ni are equal. With any M-magnon state we can associate a polynomial 
Y(zi; ai) of degree less than (N - 1) in each variable zi such that 

These polynomials are symmetric under the simultanueous permutations of the spins and 
coordinates (X3). The class of states we consider are associated with polynomials of the 
form 

(3.12) 

with @ ( z i , a i )  a polynomial of degree less than (N - M - I )  in each variable zi ,  
antisymmetric with respect to &. 

In the next section, we show that on the class of states specified by (3.12). the spin 
transfer matrix acts as the matrix tQb(x )  given by 
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where 

(3.14) 

The number of particles is the number of magnons. Furthermore, these states are annihilated 
by the elements Tp‘(x), a = I , .  . . , p - 1 of the transfer matrix. 

Before we establish the equality of Tab and tub, let us show how it enables to associate 
an invariant subspace of T(x)-with an inLariant subspace of t ( x ) .  For this let us diagonalize 
the product S ( x )  = n,”=,(x-DJ where Ds = &-E,, K,8. By the fermionicconstruction 
of section 2.3 it is achieved by diagonalizing the Ds on polynomials of the form 

(3.15) 

The eigenvalues of S ( x )  are characterized by a partition In1 = (nl 2 nz > . . . 2 n ~ )  and 
are equal to 

N + I  with fs = n, + s - - 
2 

M 

4.1 = n ( x  - fJ 
$4 

(3.16) 

The corresponding eigenstates of S(x) are such that the monomial of highest degree of 
@(z;) is equal to 2;; . . .z;;. They are associated with a state of the chain by the above 
correspondance only if n,$ < N - M - 1, therfore the fi must satisfy the following 
inequalities: 

(3.17) 

In addition, at most ( p  - 1) integers n, can be equal, i.e. at most ( p  - 1) integers fs can 
be consecutive, since the spin wavefunction @ ( z i , q )  (3.12) is antisymmetric. 

When we evaluate the quantum determinant of T ( x )  on this class of states in terms of 
S(x ) ,  we obtain the following equation for A(x):  

A(x) = Pi(x)...Pp(x)Slnl(x - 1) (3.18) 
where the polynomals & ( x )  have been defined in (3.8). Comparing this equation with 
(3.9), we see that the f,’s completely determine the position of the roots of the polynomials 
P d x ) .  Namely, the way to recover the binary sequence which characterises the invariant 
subspace consists in inserting a ‘I’ between consecutive roots of A(x) if the smallest root 
is equal to f;. for some i, and a ‘0’ between all other consecutive roots. 

This result extends to the su(p) transfer matrix the known correspondence between 
the su(2) spin chain and the CalogeroSutherland Hamiltonians [1,2,31,32]. In the next 
section we show that on the states (3.12) the spin chain Hamiltonian acts as follows: 

Therefore, the energy of a motif fs is 

(3.19) 

All states in the same invariant subspace are degenerate. The energy spectrum (3.20) 
satisfies a nice additivity property The symbols ‘I’  of a motif code the occupation numbers 
of quasi-particles with energies e ( f s ) .  These quasiparticles obey a generalized exclusion 
principle 131 which is reflected in the rules to fill a motif. 
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3.3. The correspondence between the spin and dynamical models 

To establish the correspondence between the chain and the dynamical models, it is 
convenient to use the expression (2.13) of the transfer matrix before it is prujected by 
n. He=, we consider the additive form (2.13), a similar argument can also be applied to 
the multiplicative form (2.22). Let us enlarge the Hilbert space of the chain by introducing 
states [r) which are described by a spin and coordinate wavefunction as follows: 

ir) = r:;::::::: laj) 8 In) 
U, n, 

where lai) describe the spin configurations of the chain and the permutation 

(3.21) 

(3.22) 

describes the coordinate configurations. 
representation of the operators zi and K;j given by 

On this Hilbert space, there is a natural 

zdn)  =%&) 

Kijln) = I(W) 
In this way, we obtain a realization of the differentials Di defined by 

(3.23) 

(3.24) 

which obey the relations (2.11) with A = 1. The Hilbert space of the chain is recovered 
when we restrict ourselves to (boson) states invariant under the simultanous permutations 
of the spins and the coordinates (&). Since the states of the chain are characterized by 
their spin wavefunction I'y*$:::r$, we can represent them by projecting them on the identity 
permutation 

(3.25) 

The projection by K of an operator X which preserves the bosons is defined by 

Thus, if we apply the projection i~ to the operator 

(3.27) 

we recover the expression (3.2) of the transfer matrix. 
For our purpose, it is more convenient to represent the magnon states by wavefunctions 

such that the magnons occupy the first M sites of the chain and the N - M last spins are 
all equal to p. Therefore, we define a projection PM acting in the M magnon sector by 
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The M-magnon states which are characterized by the wavefunction (3.10) are given by the 
projection by PM of the bosonic Hilbert space on the states 

(3.29) 

Here, because of the bosonic nature of the states, we need only keep the M first indices ni 
of the permutation n to define the state In). In the same way as in (3.26), we define the 
projection p~ of an operator X acting in the M-magnon sector by 

(3.30) 

Let us consider the projection by p~ of the first p - 1 rows and columns of the transfer 
matrix (3.27) 

PMXlrB) = PM(X)PMlrB) . . 

(3.31) 

for 1 <a, b < p - 1. 
First. only the first M first terms of the sum conhibute because p ~ ( X g ~ )  = 0 if 

i > M + 1. Then consider the representation of the differentials D; on the projected 
Hilbert space 

The second sum can be extended to all k since we assume that the wavefunction vanishes 
when two arguments are equal. We now on specialize to = exp(i2JrkjN). In that case, 
one can show that polynomials P(z) of degree between 1 and N - 1 satisfy the identity 

(3.33) 

Therefore, on the class of wavefunctions associated with the polynomials (3.12) we can 
replace the differentials Di by the differentials Di defined in (3.14). This shows the equality 
of the transfer matrices p ~ ( 7 ' " ~ )  and to* defined in (3.13) on this class of states. Similarly, 
one could show that the matrix elements p ~ ( T " p )  vanish on those states which establishes 
the correspondence used in the last section. 

Finally, consider the generalized Hamiltonian 

H^ = Eei je j iKj j  (3.34) 
i<J 

whose projection by IT is the spin chain Hamiltonian. One can show [33] that it commutes 
with K i j  and D; in the representation (3.23) if the conditions (3.6) are satisfied. TherefoE, 
it defines a conserved quantity for the chain. Similarly as above, one can evaluate p u ( H )  
to obtain 

(3.35) 

We used this equation to find the spectrum in the previous section. In the chain case, unlie 
in the dynamical case, we have not obtained the generating function for the conserved 
quantities. 
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4. Trigonometric models 

The aim of this section is to repeat the construction of the transfer matrix in the trigonometric 
case where the Hecke algebra plays the role of the permutation algebra. Consider the 
representation of Yang's relations 

Y l d U I  - uz)Yu(ur - U3)YIZ(UZ - U 3 1  = Y d U Z  - U 3 ) Y I Z ( U l  - U 3 ) Y U ( U l  - U2) 
given by [34] 

(4.1) 

(4.2) zu 
f i i + l ( u )  = q  ri i+l  -ti:l 

where the t i ) + !  are the generators of a Hecke algebra . 

( t i i + l  - 9 ) ( t i i + 1  + 4- l )  = 0 

t i i+ l  t i i + ~ h i + ~  = t i i + z t i i + l t i i + z  (4.3) 

[ t i i + ~ ,  t j j + i I  = 0 if li - j l  2 2. 

If we let the permutations P i j  act in the natural way on the indices k,  I of & I ,  the operators 
defined by 

(4.4) R i j ( u i  - ~ j )  = Y i j ( U i  - U j ) P i j  

obey the Yang-Baxter equation 

R d U 1  - UZ)R13(UI - U3)R23(UZ - U3)  = R A U Z  - udR13fu1 - U . ~ ) R I Z ( U ~  - U d  . 
(4.5) 

A transfer mahix P(U) which obeys the quadratic relations (2.6) is given by 

?(U) = Ll(U)LZ(U)..'LM(U) 

with 

(4.6) 

(4.7) 

The yi are spectral parameters and, as before, n factor 
which is not relevant for the following discussion. Let us assume that there exists another 
realization of the Hecke algebra (4.3) generated by the g i i + l  which commute with the IIX+I 
and the P i j  but not with the y j .  We define q-boSOn (fermion) states I*,) (Iqlp)) by 

! denominator is a normaliza 

We require the 9-bosonic subspace to be preserved by ?'(U). For this, we define a projection 
r which substitutes tii+l for gii+l to the right of an expression. The analogous condition 
to (2.23) which ensum that To =*(Po) obeys the Yang-Baxter equation is now 

r(m+lP) = t i i+ln(m . (4.9) 
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Equation (4.9)is realized if the yi obey the relations of an affine Hecke algebra 

(4.10) 

It results from the following equalities: 

~ ( g i i t l L i b + l )  = t i i t l z ( L i L i t 1 )  . (4.1 1) 

To obtain a representation of the transfer matrix we need io have the ti;+i and the Pij act 
on the spins and the g;;+l act on the coordinates zj of the wavefunction. The P;j permute 
the spins, and for the I;;+I we can use the standard representation of the Hecke algebra on 
the spin chain (see for example [35]). For the we can use the following representation 
[36]: 

gii+i = 9 K i i t 1  - (9 - 9-’)%+1 (Ki i t l  - 1) (4.12) 

where 0, is defined as before (equation (2.4)) and K;j permutes the coordinates z; and zj 

of the wavefunction. The yj are given by 

yj  = g’I ,/+I K . .  J J t i  . . . g : ’ K .  j M  J M .  S . . K i j g l j . .  J . K1-1jgj-1,  (4.13) 

where the operator S, multiplies the coordinate q by a constant p 

q ( Z i . .  . . , p Z k , .  . . , ZM) . s k * ( Z l , .  . . . E & ,  . . . , Z M )  (4.14) 

The transfer matrix z(p)  is finally obtained when we use the bosonic condition (4.8) and 
the explicit form (4.12) of g;;+l to eliminate the permutations Kiitl on the right-hand si& 
of an expression 

(4.15) 

Note that the Y/ i+i (z )  form a representation of Yang’s algebra (4.1) for which the spectral 
parameters U ;  are replaced by the coordinates z;. 

The quantum determinant of T ( u )  is given by 

(4.16) 

where 

 AM^) “R((q”Y1 - I)..’(92UYM - 1)) (4.17) 

is the generating function for the conserved quantities. We do not repeat the diagonalization 
of A(u) which is parallel to the discussion of the last section and yields the q-analogue of 
(2.38). 

The transfer matrix of the spin chain is obtained by setting p = 1 in the previous 
transfer matrix. As for the HaldaneShastry chain, we have not obtained the the conserved 
quantities which commute with this transfer matrix. 
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